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Abstract
The spin and orbital moments for small Fe clusters deposited on a Ni(001) surface have been
calculated by means of an ab initio method. We find enhanced spin and orbital moments
compared to what is found in bulk Fe. Our obtained spin moments are in good agreement with
previous theoretical studies on similar systems. Comparing our results with a recent x-ray
magnetic circular dichroism study (Lau et al 2002 Phys. Rev. Lett. 89 057201), we find that the
calculated orbital moments are much lower than those experimentally found. Reasons for this
discrepancy are discussed.

1. Introduction

Magnetic nanostructures in the form of small clusters deposited
on a metal surface have recently attracted considerable
attention. Due to their size and confinement to the surface,
these clusters often have magnetic properties different from
what is found in bulk material. Usually, the atoms in these
small clusters exhibit enhanced magnetic moments, which
can be explained by band narrowing, that is caused by the
lowered coordination for the cluster atoms. Due to the reduced
symmetry, the orbital moments are often enhanced as well,
which can result in large anisotropies for supported clusters [1].
These properties are desired for industrial applications, e.g. in
future data storage applications [2]. Another interesting feature
of supported clusters is that by increasing the cluster size it is
possible to monitor the change of the magnetic properties as
the studied systems vary from atomic-like to a fully bulk-like
behaviour.

The interest in this field is also fuelled by recent
advances in experimental techniques, like spin-polarized
scanning tunnelling microscopy [3] and x-ray magnetic
circular dichroism (XMCD) [4, 5]. By using these techniques
it is possible to measure the magnetic properties of supported
nanostructures with almost atomic resolution.

Supported Fe clusters have also been the subject of a
number of studies, both experimental and theoretical. Among
the theoretical ones, Fe has been studied on Cu surfaces,
both as monatomic wires [6, 7] and as small clusters [8, 9],
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where enhanced spin and orbital moments have been found.
Studies of Fe clusters on Al [10] have found a transition from
paramagnetic behaviour for small clusters to ferromagnetic
behaviour for clusters larger than ten atoms. For the subject
of this work, Fe on Ni(001), two previous theoretical studies
have been reported [9, 11]. These two studies are consistent
with each other and the findings are that the spin moment is
enhanced for the Fe atoms, compared to what is found for bcc
Fe, and that the magnitude of the spin moment is correlated
to the number of Fe neighbours in the cluster. In one of these
studies [11], the equilibrium structures of the Fe clusters were
calculated by means of a modified embedded atom model.

Deposited Fe clusters have been studied experimentally on
graphite [4], where the clusters had an average size range of
several hundred atoms, and on Ni(001) [5], where the cluster
sizes were very small and controlled. For the latter study a
strong non-monotonic variation was found for both the spin
and the orbital moments as a function of cluster size. It was
proposed that this behaviour might be related to geometric
differences between clusters with odd and even numbers of
atoms. However, the trend of a strongly varying spin moment
was not obtained in subsequent theoretical studies [9, 11], even
though several different cluster geometries were considered [9]
and the stablest lowest-energy structures were predicted [11].

Despite an exhaustive treatment of the spin moments for
Fe cluster on Ni(001) in the previous theoretical studies, no
study of the behaviour of the orbital moment for these systems
has been reported. In order to address the experimental studies
of orbital (and spin) magnetism in these systems, we have
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Figure 1. Top view of the structures of Fe clusters on Ni(001) which
were used in the calculations. The geometries marked with an
asterisk are taken from Martinez et al [11].

calculated both spin and orbital moments for a selection of
small Fe clusters deposited on a Ni(001) surface.

2. Calculational details

The calculations were performed with the RS-LMTO-ASA
method [12–14], which is based on the regular LMTO-ASA
technique [16] and uses the Haydock recursion method [17]
to calculate the electronic structure by means of the local
density of states (LDOS) of the ingoing atoms instead of
solving the eigenvalue directly. By employing the recursion
method, an O(N) scaling of the computational effort with
respect to the system size is obtained. The RS-LMTO-
ASA is a fully parameter-free, first principles method where
the spin densities are treated within the local spin density
approximation (LSDA) [18].

The electronic structure of the Fe clusters has been
obtained by embedding them as a perturbation on a previously
self-consistently converged ‘clean’ Ni(001) surface. The
charge and magnetization densities for the cluster atoms and
neighbouring Ni atoms are then recalculated self-consistently
while the densities for Ni atoms far from the cluster are kept
fixed to their values for the unperturbed surface. In order to
provide a basis for the wavefunction in the vacuum and to treat
charge transfers correctly, two layers of empty spheres above
the Ni surface are included in the calculations. The procedure
for the empty spheres is the same as for the Ni atoms, i.e. empty
spheres close to the cluster are calculated self-consistently. In

Table 1. Calculated average spin (µs) and orbital (µo) moments
(in µB) and average number of d holes (nh) for the clusters are shown
in figure 1. The two different rows of orbital moments correspond to
calculations with orbital polarization (OP) and without (no OP). On
the left results for unrelaxed geometries are shown, whereas on the
right we present results for the relaxed geometries taken from [11].

Unrelaxed Relaxed

µo µo µo µo

µs (OP) (no OP) nh µs (OP) (no OP) nh

2 3.13 0.19 0.10 3.61 3.14 0.21 0.10 3.61
3a 3.11 0.19 0.10 3.60
3b 3.07 0.16 0.09 3.59 3.08 0.19 0.10 3.57
4 2.95 0.12 0.07 3.53 2.98 0.14 0.08 3.52
5a 3.06 0.15 0.08 3.60
5b 2.97 0.13 0.08 3.55 2.99 0.15 0.08 3.54
5c 2.83 0.17 0.08 3.49
6a 2.93 0.12 0.07 3.53 2.94 0.11 0.07 3.55
6b 3.07 0.18 0.09 3.58
6c 2.98 0.13 0.08 3.56
6d 2.99 0.14 0.08 3.55
7 2.93 0.12 0.07 3.53 2.97 0.14 0.08 3.53
8 2.91 0.12 0.07 3.52 2.95 0.13 0.08 3.52
9 2.90 0.12 0.07 3.52 2.94 0.13 0.07 3.52

all the calculations the LSDA equilibrium lattice parameter for
Ni, 3.48 Å, was used.

The Ni surface was modelled by a large cluster of
>7000 atoms and the continued fraction, that occurs in
the recursion method, has been terminated with the Beer–
Pettifor [19] terminator after 30 recursion levels. Both the
number of atoms for modelling the semi-infinite surface and
the number of recursion steps were tested for convergence.

In order to calculate the orbital moments we perform
fully relativistic calculations where the spin–orbit interaction
is treated at each variational step [15]. Details can be found
in [14]. For all cluster sizes, calculations were performed
both with and without including the orbital polarization term
(OP) [20]. Furthermore, in the analysis of XMCD spectra one
often uses the number of d holes, which we have calculated as
10-nd, where nd is the d occupation.

The geometries of the clusters which we have considered
can be seen in figure 1. Some of these structures correspond
to the most stable solutions obtained by Martı́nez et al
[11]. For these particular cases, marked with an asterisk, we
have performed calculations with and without including the
relaxations found in [11]. The size of the clusters ranges from
two to nine atoms. In some cases we have considered several
isomers to explore the influence of the structure in the magnetic
properties. In the following text, the different clusters will be
referred to according to the labels given in figure 1.

3. Results

The average spin and orbital moments of the Fe clusters shown
in figure 1 are given in table 1, as well as the average number
of d holes. We present the orbital moments with orbital
polarization (denoted OP in table 1) and without (denoted no
OP). The size of the spin moments and the number of d holes
are insensitive to whether orbital polarization was included
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Figure 2. Spin (upper panel) and orbital (lower panel) moments per
d hole of Ni(001)-supported Fe clusters versus cluster size. The
experimental values from [5] are also included.

or not. We notice, in general, a decrease of the spin and
orbital moments with increasing cluster sizes, even though
the change is small. Our calculated spin moments compare
well to those reported earlier [9, 11]. Regarding the orbital
moments, we find that including the orbital polarization term
results in roughly a doubling of the orbital moment compared
to when OP is neglected. The decrease of the average spin and
orbital moments with increasing cluster sizes is expected since,
in general, larger clusters have higher average coordinations,
which, as was mentioned in section 1, lead to smaller magnetic
moments. For those isomers showing a very different average
coordination, like 6b, the magnetic moments are also very
different. If the number of d holes is considered, a similar
behaviour is found. There is a decrease of the number of
d holes for increasing cluster size, and this variation can be
related to the different average coordination. In this case the
changes are less important than the ones found for the magnetic
moments.

The same trends are valid for unrelaxed and relaxed
geometries. In the latter case an increase is observed in general
for both spin and orbital moments when compared to the
unrelaxed situation for the same geometry. For spin moments
the increase is 0.04 µB at most, while for orbital moments the
maximum increase is 0.03 µB. In all cases the main effect of
the relaxation is an expansion of the cluster–substrate distances
of around 4%. The expansion decreases the hybridization
with the substrate and, therefore, the tendency to magnetism
is increased.

The XMCD study reported in [5] found a strong non-
monotonic variation of both spin and orbital moments as
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Figure 3. Ratio of Fen orbital to spin magnetic moments as a
function of cluster size. Unrelaxed and relaxed results are included
for those geometries marked with an asterisk in figure 1. The
experimental values from [5] are included for comparison.

a function of cluster size. A comparison between the
experimental values and those obtained in this work is found
in figure 2, where we show both the calculated spin and orbital
moments per d hole as well as the experimentally found ones.
For the sake of clarity, only values corresponding to relaxed
geometries are displayed. Starting with the spin moments that
are shown in the upper part of figure 2, we see that the majority
of our calculated moments are within the reported error bars
of the experimental values. Nevertheless, the calculated values
are slightly underestimating the spin moments from the XMCD
measurements. However, the experimental values for the spin
moments include a contribution by the spin magnetic dipolar
term 〈Tz〉, which could be significant for some of the clusters,
clearly for those where µs/nh > 1. The inclusion of this term
could partly explain the disagreement with the experimental
results.

In the lower panel of figure 2, we show the calculated
orbital moments as a function of cluster size. The discrepancy
between theory and experiment is much larger for the
orbital moments than for the spin moments. The smallest
calculated orbital moment is found for large clusters, and it
has a magnitude of 0.02 µB per d hole, while the smallest
experimental value is 0.06 µB per d hole and it is found for
a three-atom cluster. The difference is even more important
when larger values are compared: no calculated orbital
moment is larger than 0.05 µB per d hole, while the largest
measured orbital moment is as large as 0.24 µB per d hole. It
can be noted that, even though the orbital moments are around
twice as big when OP is included, the orbital moments are still
underestimated in this case. The use of orbital polarization has
in certain cases led to a significant overestimation of orbital
moments, but the present results show too small amounts.

In figure 3, the ratio of orbital to spin magnetic moments
for the Fe clusters is shown. Given the differences between
calculated and measured orbital moments, it is not unexpected
that the calculated ratios differ significantly from the measured
ones. The largest ratio for the calculated moments is 0.07 with
OP, and 0.03 without, while measured ratios range between
0.07 and 0.27. A non-monotonic behaviour is found for the
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calculated ratio, but it does not seem to have any connection to
the behaviour found in the XMCD measurements.

In order to explore the influence of relaxation, the
results for relaxed and unrelaxed geometries can be compared
in figure 3. As expected from table 1, the ratios are
only slightly increased by including the relaxation, and the
qualitative disagreement with the experiment is not solved by
its consideration, as shown in figure 2.

We have considered several possibilities which could
explain the discrepancies with the experimental results. In
light of the calculations, the influence of the geometry can
be discarded. Particular shapes with small coordination, like
linear chains (3a or 6b), lead to an increase of the values for
the magnetic moments, but they do not reach the values of the
experiment by far. Another possibility is a possible surface
intermixing. We have checked this situation by performing
calculations for clusters where Fe atoms were replaced by
Ni ones. Also in this case, the obtained results can be
explained in terms of local coordination. The clusters could
also be embedded in the top layer of the Ni cluster. Although
experimentally it is an unlikely situation due to the deposition
procedure, we have also checked this scenario. As expected,
the orbital and spin magnetic moments are smaller in this
case than for the supported clusters, due to the increase in the
average coordination. In conclusion, none of our calculations
were able to shed more light on the mechanism behind the
experimental behaviour for the orbital magnetic moments.
Instead we conclude that effects beyond those incorporated in
LSDA must be responsible for the deviation between measured
and calculated orbital moments.

4. Summary and discussion

We have calculated spin and orbital moments of small Fe
clusters supported on a Ni(001) surface. Our obtained spin
moments are in good agreement with previous theoretical
studies, and they generally agree with the Lau et al
experimental ones to within the experimental error. As far as
we know, the orbital moments have been calculated here for
the first time in these systems. We have found that the orbital
moments have an average value between 0.11 and 0.21 µB

when including the OP term, and between 0.07 and 0.10
without including it. These values are much lower than the
ones found experimentally. We have also found that the orbital
moments non-monotonically decrease on increasing the cluster
size, but this behaviour was not related to the much stronger
experimental one. Several additional calculations have been
performed trying to explain this discrepancy, considering
surface intermixing, different cluster shapes or embedded
clusters. None of these options have been able to explain
the experimental behaviour. It is possible that the reason
for the discrepancy between experiment and theory lies in
the fact that the width of the d level for these clusters is
reduced significantly compared to the corresponding value of

bulk of surface geometries. In this way the width of the
d resonance could approach the value of electron–electron
interaction (Hubbard U ), and the applicability of the local
density approximation (or generalized gradient approximation)
starts to break down. A possible solution to this problem is to
use e.g. the Hubbard-I approximation in combination with first
principles theory [21].
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foundation, the Swedish Research Council, the Swedish
Foundation for Strategic Research, and CNPq, Brazil.
The calculations were performed at the high performance
computing centres UPPMAX, NSC, and HPC2N within the
Swedish National Infrastructure for Computing.

References

[1] Gambardella P, Rusponi S, Veronese M, Dhesi S S, Grazioli C,
Dallmeyer A, Cabria I, Zeller R, Dederichs P H, Kern K,
Carbone C and Brune H 2003 Science 300 1130

[2] Weller D, Moser A, Folks L, Best M E, Lee W, Toney M F,
Schwickert M, Thiele J-U and Doerner M 2000 IEEE Trans.
Magn. 36 10

[3] Bode M 2003 Rep. Prog. Phys. 66 523
[4] Edmonds K W, Binns C, Baker S H, Maher M J, Thornton S C,

Tjernberg O and Brookes N B 2000 J. Magn. Magn. Mater.
220 25
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